Skip to main content

Courses | VD Academic Affairs

CHE
521

Course Number:
0640521
Review of first second and third laws of thermodynamics. Applications of the first and second laws. Fundamental equations and thermodynamic relations. Gibbs-Duhem equation. Partial molar quantities. Equations of state and fugacity calculations. Thermodynamic departure quantities. Intermolecular forces and property estimations. Phase equilibrium calculations. Chemical reaction equilibrium and effects of temperature and pressure on reaction conversions. Statistical thermodynamics and partition functions. Use of statistical thermodynamics in estimating thermodynamic properties.
(3-0-3)

CHE
522

Course Number:
0640522
Effect of temperature, pressure and mixing patterns on conversion and product distribution in complex homogeneous reactions. Theoretical models for non-ideal flow and fluid mixing.
(3-0-3)

CHE
540

Course Number:
0640540
History of artificial intelligence. Expert system knowledge, computing and manipulation of knowledge. Proces applications of expert systems such as the co-operate intelligence network, production management and supervision including setpoint optimization, process sequencing and production recipes. Process control applications in intelligent operator interface, predictive control and fuzzy control. Applications in safety systems and alarm management.
(3-0-3)

CHE
541

Course Number:
0640541
Different patterns of flow: in an annulus, two immescible fluids, creeping. Equation of continuity, of motion and of change. Velocity distribution in turbulent flow. Time smoothed equations, eddy viscosity and friction factors for different flows. Fluidized bed hydrodynamics. Turbulance theory and applications to mixing.
(3-0-3)

CHE
543

Course Number:
0640543
Correlations of heat transfer coefficient. Unsteady and two dimensional conduction: analytical solution compared to numerical techniques and where each method fits. Thermal boundary-layers flow and temperature distribution in turbulent flows. Application of different numerical techniques in fluid flow-heat transfer problems. Introduction to some topics in radiation. Two phase heat transfer case study for design.
(3-0-3)

CHE
544

Course Number:
0640544
Models for diffusion and dispersion. Mass transfer with chemical reactions. Simultaneous heat and mass transfer. Modelling of absorption, extraction and adsorption systems. Energy requirements for operations. Synthesis of separation sequences.
(3-0-3)

CHE
545

Course Number:
0640545
Principles of molecular diffusion and measurement and characteristics of diffusion coefficient. Flow field induced by mass transfer. Heat and mass transfer in absence of a flow field. Flow field induced by body forces or external forces, finite difference solution of transport problems. Moving boundary problems.
(3-0-3)

CHE
551

Course Number:
0640551
Dispersion models of pollutants in the atmosphere. Particulate matter and design of control equipment. Gaseous pollutants and design of control equipment. Atmospheric photochemical reactions. Instrumentation, measurement and emission testing equipment. Air pollution packages. Application.
(3-0-3)

CHE
552

Course Number:
0640552
Concept of clean technologies with minimal emissions. Concept of waste minimization and its applications in process design. Waste reduction technologies such as in-plant modifications, recycle, recovery and re-use and waste exchange. Case studies will include examples from petroleum refining, petrochemical and chemical industries.
(3-0-3)

CHE
553

Course Number:
0640553
Introduction to Computer Aided Design (CAD). Chemical Engineering Simulation Systems (CHESS). Flow sheet synthesis. Distillation column simulators (Distill). Absorption, extraction and distillation simulators (ABDIS). Workshop problems.
(3-0-3)

CHE
555

Course Number:
0640555
Mathematical principles of process dynamics and control. Derivation and solution of differential equations describing the behaviour of typical chemical engineering process units. Mathematical analysis and design of control systems. Digital and sampled data control systems.
(3-0-3)

CHE
557

Course Number:
0640557
Application of chemical engineering principles to selected operations encountered in industrial waste water treatment. The course highlights the removal of suspended solids biological treatment, and chemical treatment methods.
(3-0-3)

CHE
561

Course Number:
0640561
Development of desalination technology. Basic principles of desalination. Theory and practice of the following desalination plants: Multistage flash distillation, multiple effect boiling, Reverse osmosis, electrodialysis, solar distillation, freezing. Dual-purpose desalination plants. Main problems in desalination (e.g. scale formations and corrosion). Cost considerations, comparative studies of some desalination plants.
(3-0-3)

CHE
562

Course Number:
0640562
Gas-liquid systems, solid-liquid systems, homogeneous slurries, heterogeneous slurries, long distance transportation in pipelines, gas-solid pneumatic transportation. Complex flow systems. Modelling and computational aid in multiphase flow.
(3-0-3)

CHE
563

Course Number:
0640563
Layout of local petroleum industry, phase equilibria concepts, water-hydrocarbon systems, hydrate formation, amine treatment, carbonate treatment, liquifaction, liquids recovery.
(3-0-3)