Skip to main content

Courses | VD Academic Affairs

CPE
557

Course Number:
0612557
Selections from design, analysis, optimization, and implementation of algorithms; Computational complexity, complexity classes, randomized algorithms, probabilistic algorithms, distributed algorithms, parallel algorithms; algorithm correctness and general theory of algorithms; algorithms for particular application areas including: Graphs and Networks; Cryptography.
(3-0-3)
Prerequisites:
0612-300

CPE
561

Course Number:
0612561
Introduction to theoretical issues in parallel computation. Topics: Parallel machine models. Design and analysis of algorithms for systolic arrays: arithmetic operations, simple graph algorithms. Algorithms for hypercube-related networks: sorting, routing. PRAM model of computation. Basic PRAM algorithms: prefix computation, sorting, shortest paths, minimum- weight spanning tree. Reducing the processor-time product. simulation of stronger PRAM models by weaker ones. Complexity issues: definition of NC and P-completeness; some simple lower bounds.
(3-0-3)
Prerequisites:
0612-468 or Consent of Instructor

CPE
562

Course Number:
0612562
Structure of sequential machines, partition theory and decomposition of machines, modular realization of sequential machines, regular expressions, information lossless machines and linear sequential machines.
(3-0-3)
Prerequisites:
0612-461 or Consent of Instructor

CPE
565

Course Number:
0612565
Topics include: High level synthesis, scheduling and allocation techniques, architecture style selection, two level logic minimization algorithms, multiple-value minimization and multi-level circuit synthesis. The course usually involves a project.
(3-0-3)
Prerequisites:
0612-461

CPE
566

Course Number:
0612566
Overview of the fundamental concepts in networks, wireless technology, and mobile computing. Energy-aware adaptation for mobile applications. Understanding the current routing protocols for studies of medium access control techniques for wireless communications. Design principles that are crucial for building the foundation for the design, and construction of future generations of wireless computing networks (wireless ad hoc, sensor, and buipuitous networks).
(3-0-3)
Prerequisites:
0612-356 or Consent of Instructor

CPE
567

Course Number:
0612567
Review of some important probability distributions and their properties; Markovian processes; Markovian queues; renewal theory; semi Markovian processes and the M/G/1 queue; priority queues; case studies: random access systems; polling systems; multiplexers and switching systems.
(3-0-3)
Prerequisites:
0612-454 or Consent of Instructor

CPE
568

Course Number:
0612568
Classification of parallel processing system - SIMD and MIMD machines - Multiprocessor systems and interconnection networks - Case studies of parallel processing systems - Parallel processing design issues: Programming languages, operating systems, user interfaces - VLSI computing systems: systolic arrays, wavefront arrays.
(3-0-3)
Prerequisites:
612-468

CPE
569

Course Number:
0612569
Alternative network architectures; study of the network functions and protocols in high performance networks; routing and switching; transport protocols in high-performance networks; integrated and differentiated service models and protocols; congestion and flow control protocols; broadbank ISDN and ATM; high-speed local and metropolitan area networks; advanced topics in high-performance networking.
(3-0-3)
Prerequisites:
0612-356

CPE
570

Course Number:
0612570
Fundamentals of graph theory, partition, floor planning, placement, and routing. Programming techniques and algorithms; shortest/longest path, all-pairs shortest path, dynamic programming, linear programming, non-linear programming, evolutionary approaches, simulated annealing, and hyper-algorithms.
(3-0-3)
Prerequisites:
0612-300 or Consent of Instructor

CPE
571

Course Number:
0612571
Fault modeling, redundancy techniques and reliability evaluation, error detecting and correcting codes, self-checking circuits, fault diagnosis, software fault tolerance, error mitigation methods, partial concurrent error detection, online test, reconfiguration and voting, software reliability and redundancy, hardware fault tolerance, fault detection in cryptographic systems.
(3-0-3)
Prerequisites:
0612-471 or Consent of Instructor

CPE
572

Course Number:
0612572
The course will cover basic theory and techniques of digital VLSI design in CMOS technology. We use full-custom techniques to design basic cells and regular structures such as data-path and memory. There is an emphasis on modern design issues in interconnect and clocking. Students will design small test circuits using various CAD tools. Circuits will be verified and analyzed for performance with various simulators.
(3-0-3)
Prerequisites:
0612-368 or Consent of Instructor

CPE
573

Course Number:
0612573
Wireless Communication Fundamentals
(3-0-3)

CPE
574

Course Number:
0612574
Introduction and fundementals. Medium Access Control Protocols. Cellular Networks. Wireless Internet. 4-G Systems and Pervasive Networking. Security in Mobile Networks.
(3-0-3)
Prerequisites:
0612-356 or Consent of Instructor

CPE
575

Course Number:
0612575
The students will review the fundamental design and analysis issues in computer networks, especially at the physical layer to the transport layer, including networking overview, multi-protocol network, intelligent network, ad-hoc and sensor network, mobile networking and current trends in the high-speed networks.
(3-0-3)
Prerequisites:
0612-356 and 0612-445

CPE
576

Course Number:
0612576
Information theoretic security. Fundamentals of secure networks and cryptography. Number theory for cryptography. One-way hash functions. Message authentication codes. Encryption and privacy: public key and symmetric key. Digital signatures schemes. Authentication and integrity methods and protocols. Elliptic curves cryptography. Firewalls. Virtual private networks. Transport layer security.
(3-0-3)
Prerequisites:
0612-453 or Consent of Instructor